CDS Seminar

NEW YORK UNIVERSITY m Metd AI

SSL, JEPA,
World Models and
the Future of Al

Yann Le Cun
New York University
Meta - Fundamental Al Research

NYU CDS
2025-09-10

M-51, HSO



We Need Human-Level Al for Intelligent Assistarfﬁ.I

» In the near future, all of our interactions with the
digital world will be mediated by Al assistants.

» Intelligent assistants

that can helps us in our daily lives (2013)

» Smart glasses i\

» Communicates through voice, vision, display, EMG... .\ P

» We need machines with human-level intelligence IR &
» Machines that understand how the world works

» Machines that can remember
» Machines that can reason and plan.

Meta Orion
(2024)




\ i ”‘h“ eelf),
The Ubiquitous Al Assistant is Becoming A Reallty i il

» Ray-Ban Meta (today) » Meta’s Orion Demonstrator (future)
» Cameras / microphone / speakers » Cameras / microphones
> no display » Augmented reality color display
> Voice interface to Meta Al » \/oice + EMG bracelet interface
assistant

‘ Il Custom eye tracking system
eye tracking in this form factor
v
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- But Machine Learning Sucks! (compared to humal .

1

|

» Supervised learning (SL) requires large numbers of labeled samples.
» Reinforcement learning (RL) requires insane amounts of trials.
» Self-Supervised Learning (SSL) works great but...

» Generative prediction only works for text and other discrete modalities

» Animals and humans:
» Can learn new tasks very quickly.

» Understand how the world works
» Can reason an plan

» Humans and animals have common sense
» Their behavior is driven by objectives (drives)



- What's a universal fotjbdation model architec’

» Captures structure in the data
» Discovers dependencies in a task-independent way

» Trained with Self-Supervised Learning (SSL)
» No need for labels

» Learns abstract representations in the data
» Representations that allow to make predictions

» Learns a predictive model
» Observation x, transformed observation y=Trans(x,a)

» Encoding : representations sx = Enc(x), sy = Enc(y)
» Prediction of sy : py = Pred(sx, a)



Predictive Model with JEPA M

» Joint Embedding Predictive Architecture (JEPA)
» [LeCun 2022], [Garrido 2023], [Bardes 2023], [Assran 2023], [Garrido 2024]

Pred(s,) 3 Prediction of the
Y Representation of the

- State of the world
| D(sy,5y) | At time t+1

Representation of the
State of the world
At time t

Transformation,
Action




~ AE Collapse Preventl#h through Architecturah

» Train an auto-encoder with causal connections
» No connection between an input and its corresponding output
» LLMs /| GPT architectures are the most popular example

» Trained to predict the next input.

I Predici Predicﬂ Predica Predia Predictl Divergence

)




"R " I ul Y. LeCun
to Regresswe LU nject predicted Joken
lrl Iy h

» Outputs one token after another through feed-forward prediction
» Tokens may represent words, image patches, speech segments...
» Predictor has a fixed number of layers

» Only works for discrete domains (text, DNA....)

Predictor

Prompt | predicted token

Context




LIRS
Auto-Regressive Generative Models Suck! .

» Auto-Regressive LLMs are doomed.
» They cannot be made factual, non-toxic, etc. Subtree of
» They are not controllable correct answers

> Probability e that any produced token takes Tree of all possible
. quences
us outside of the set of correct answers

» Probability that answer of length n is correct
(assuming independence of errors):

> p(correct) = (1-e)"

» This diverges exponentially.
» It’s not fixable (without a major redesign).

’

» See also [Dziri...Choi, ArXiv:2305.18654]



U 1y Y. LeCun
Can we train Generative Architecture with Continuouls;l

» Short answer: NO!!!
» It works for discrete domains, not high-dim domains
» Generative world model architecture

Representation of the Dec(sx) ~ Prediction of the
State of the world Y State of the world
At time t At time t+1

| D(y,7) |

QI S DI B g N 8
This is a [...] of text extracted This is a piece of text extracted
[...] alarge set of [...] articles from a large set of news articles



» Because the world is only partially
predictable

» A predictive model should
represent multiple predictions

» Probabilistic models are
intractable in high-dim continuous
domains.

» Generative Models must predict
every detail of the world

» My solution: Joint-Embedding
Predictive Architecture

[Henafft,

[Mathieu,
Couprie,
LeCun
ICLR 2016]

Canziani, LeCun ICLR 2019]




"
Joint Embedding World Model: Self-Supervisﬁ'

» Joint Embedding Predictive Architecture (JEPA)
» [LeCun 2022], [Garrido 2023], [Bardes 2023], [Assran 2023], [Garrido 2024]

Pred(s,) 3 Prediction of the
Y Representation of the

State of the world

Representation of the
State of the world
At time t

| D(sy,5y) | At time t+1

Transformation,
Action




AN
~ Architectures: Generative vs Joint Embeddlnd‘

» Generative: predicts y (with all the details, including irrelevant ones)
» Joint Embedding: predicts an abstract representation of y
» JEPA lifts the abstraction level, generative architectures do not.

Pred(s,) ~ Pred(s)

I D(y,g) I ID Sy,Sy
S S
x x Sy
Enc(x) Enc(x) Enc(y)
a) Generative Architecture b) Joint Embedding Architecture

Examples: VAE, MAE...



' : Y. LeCun
This 1Is how models are built in traditional phy}sdi

Find an abstract state representation that allows to make predictions
Extract the state representation from observation/measurement
Predict outcome resulting from an intervention/experiment

Prediction of the
Pred(s;) S Representation of
Y The resulting state

Representation of
The resulting state

VvV Vyy

Irrelevant and state vector of
unpredictable relevant
) . . variables
information is

eliminated from the
representation

» The representation
contains
Information that
makes prediction y .
Initial transformation Resulting

pOSSi ble System experiment System
Observation Observation
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How do babies learn how the world works

£ Jahia Fizpiine Uskesreiny




Current architectures are missing something re al

» Never mind humans, cats and dogs can do amazing feats
» Current robots intelligence doesn’'t come anywhere close

Any house cat can plan highly complex actions
Any 10 year-old can clear up the dinner table and fill up the
dishwasher without learning (“zero-shot”)

Any 17 year-old can learn to drive a car in
20 hours of practice

Al systems that can pass the bar exam, do
math problems, prove theorems....

...but where are my Level-5 self-driving car
and my domestic robot?

» We keep bumping into Moravec’s paradox

» Things that are easy for humans are difficult
for Al and vice versa.

vV vV v VvV
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Our world model need!s to be trained from seh
' | \

> LLM
» Trained on 3.0E13 tokens (2E13 words). Each token is 3 bytes.

» Data volume: 0.9E14 bytes.
» Would take 450,000 years for a human to read (12h/day, 250 w/minute)

» Human child
» 16,000 wake hours in the first 4 years (30 minutes of YouTube uploads)

» 2 million optical nerve fibers, carrying about 1 byte/sec each.
» Data volume: 1.1E14 bytes

» A four year-old child has seen more data than an LLM !



Desiderata for AMI (Advanced Machine Intellig(ﬁ )

» Systems that learn world models from
sensory inputs

» E.g. learn intuitive physics from video

» Systems that have persistent memory
» Large-scale associative memories

» Systems that can plan actions
» So as to fulfill an objective

» Systems that can reason
» Inventing new solutions to unseen
problems
» Systems that are controllable & safe
» By design, not by fine-tuning.




~Inference: feed-forwdr)#l propagation vs opti ml %

» What is reasoning and planning?

» Feed-forward propagation is insufficient

» Complex inference requires the optimization of an objective

» Every computational problem can be reduced to optimization
» This includes every inference and planning problem.

» Energy-Based Model

Optimization

Perception

Perception

. representation
representation P

& observation ® observation




|

“Inference through opti;r'l*nization: Objective-Drih

1

» Inference through optimization is used in
classical methods

» Probabilistic graphical models, Bayesian nets

Perception

Optimization

representation

» Model-Predictive Control in robotics
» Search & planning in “classical” Al

» In the past, all of Al was viewed as a search
or optimization problem

» Path planning, Block World, Towers of Hanoil,
SAT, logical inference
» Optimization-based inference enables zero-shot “learning”

» |t can find innovative solutions to unseen problems.
» All game-playing Al systems use search/planning
» Optimization-based inference is “System 2”



- Capturing Dependent;,%s with Energy-Based

» The only way to formalize & understand all model types
» Gives low energy to compatible pairs of x and y

» Gives higher energy to incompatible pairs

Energy
Landscape

time or space -




- 2. World Model for Pl‘a}ﬁning/Reasoning h I\

» Perception: Computes an abstract representation of the state of the world
» Possibly combined with previously-acquired information in memory

» World Model: Predict the state resulting from an imagined action sequence
» Task Objective: Measures divergence to goal

» Guardrail Objective: Immutable objective terms that ensure safety

» Operation: Finds an action sequence that minimizes the objectives

Perception
L N
Al
LS 2

Guardrail
Objective

Initial World state Predicted state | ooV

representation Sequence

) representation
Action
Seqguence

memory




| 2. Models for Physicé#xperiments | '

» Encoder: Computes an abstract representation of the state of the system

» World Model: Predict the state resulting from an imagined experiment or
iIntervention.

» Hypothesis Objective: Measures divergence to the result expected from the
experiment

» Constraints: that the trajectory must satisfy.
» Find an action an experiment that validates or invalidates the hypothesis
»I hypothesis ‘
. Objective
Representation

Representation of

Initial state of predicted state
P Intervention /
= 46 experiment




- Objective-Driven Al: MLItistep/Recurrent Worl «.;"

» Same world model applied at multiple time steps

» Guardrail costs applied to entire state trajectory

» This is identical to Model Predictive Control (MPC)
» But with a trained world model

» Action inference by minimization of the objectives
» Using gradient-based method, graph search, dynamic prog, A*, MCTS,....

Perception
World state
representation
S )

Guardrail Guardrail
Costs Costs

Final state Cost

representation

Predicted state
representation




- Objective-Driven Al: P.«#)n-Deterministic Worldll

» The world is not deterministic or fully predictable
» Latent variables parameterize the set of plausible predictions
» Can be sampled from a prior or swept through a set.

» Planning can be done for worst case or average case
» Uncertainty in outcome can be predicted and quantified

Guardrail Guardrail
Costs Costs

Final state Cost

representation

Predicted state
representation

World state
representation

Perception




 Objective-Driven Al: #*rarchical Planning ",l

» Hierarchical Planning: going from NYU to Paris

Taxi or train? Which
EWR or JFK? Airline?

@ Guardrail2

Guardrail2

Encl(x)

Distance
To Paris

At NYU

hail or call?
Obstacles? Traffic?

@ Guardraill @ Guardraill

Distance
To airport

Sitting in
my NYU

office @ @

Go down Grab a taxi
In the street To airport




Objective-Driven Al Systems

Al that can learn, understand the world,
reason, plan,
Yet is safe and controllable

“A path towards autonomous machine intelligence”

[previous versions of this talk available on YouTube]


https://openreview.net/forum?id=BZ5a1r-kVsf

 Modular Cognitive Arﬂ*itecture for AMI

» Configurator
» Configures other modules for task

» Perception
» Estimates state of the world

» World Model
» Predicts future world states

» Cost
» Compute “discomfort”

» Actor
» Find optimal action sequences

» Short-Term Memory

» Stores state-cost episodes percept



How could Machines Learn
World Models from Observations?

Self-Supervised Learning



Joint Embedding Architectures

» Computes abstract representations for x and y
» Tries to make them equal or predictable from each other.

/I D(3y7 §y) I\ /I Pred Sﬂ?)& Pred(3x7 Z) g
Y

ID Sy,Sy)I ID<Sy78y
S
'Enc(a:). 'Enc(y). 'Enc | Enc 'Enc | Enc
a) Joint Embedding Architecture (JEA) b) Deterministic Joint Embedding c) Joint Embedding Predictive
Examples: Siamese Net, Pirl, MoCo, Predictive Architecture (DJEPA) Architecture (JEPA)
SIMCLR, BarlowTwins, VICReg, Examples: BYOL, VICRegL, I-JEPA Examples: Equivariant VICReg



~ Architecture for actiohéconditioned world mo

» JEPA: Joint Embedding
Predictive Architecture.

» X: observed past and present

» y: future
» a: action

» z: latent variable (unknown)
» D( ): prediction cost

» C(): surrogate cost

» JEPA predicts a representation Enc(x)
of the future Sy from a
representation of the past and
present Sy




Energy-Based Models for
Self-Supervised Learning

Capturing dependencies through an energy function

Probabilistic modeling is intractable in high-dimensional
continuous domains.



- Energy-Based Model’# Implicit function h

» The only way to formalize & understand all model types
» Gives low energy to compatible pairs of x and y

» Gives higher energy to incompatible pairs

Energy
Landscape

time or space -




raining Energy—Ba%m Models: Collapge Pr

» A flexible energy surface can take any shape.
» We need a loss function that shapes the energy surface so that:
» Data points have low energies

» Points outside the regions of high data density have higher energies.
Collapse! Contrastive Method Regularized Methods

| @




- EBM Training: two categories of methods |L~

p» Contrastive methods

» Push down on energy of
training samples Low energy

region Contrastive
Method

/

Contrastive
samples

» Pull up on energy of
suitably-generated
contrastive samples

» Scales very badly with

dimension y &
>
» Regularized Methods Training |
. e samples Regularized
» Regularizer minimizes the Method 1
volume of space that can -
X

take low energy 3



1IN Y. LeCun
EBM Architectures l x\

» Some architectures can lead to a collapse of the energy surface

Pred( sx,

a) Prediction / regression b) Generative latent-variable Architecture c) Auto-Encoder d) Joint Embedding Architecture
NO COLLAPSE CAN COLLAPSE CAN COLLAPSE CAN COLLAPSE



i r‘1 r‘ Y. LeCun
 Energy-Based Models vs Probabilistic Model

Energy

» Probabilistic models are a special case of EBM Funclion

» Energies are like un-normalized negative log probabilities

» Why use EBM instead of probabilistic models?
» EBM gives more flexibility in the choice of the scoring
function.

» More flexibility in the choice of objective function for
learning

» From energy to probability: Gibbs-Boltzmann
distribution —BF (z,y)

» Beta is a positive constant P ( _
e x,Yy )
,y/




- Contrastive Methods \}f’bReguIarized/Architectu'r al

P Contrastive: [they all are different ways to pick which points to push up]

» CL1: push down of the energy of data points, push up everywhere else: Max likelihood (needs
tractable partition function or variational approximation)

» C2: push down of the energy of data points, push up on chosen locations: max likelihood with
MC/MMC/HMC, Contrastive divergence, Metric learning/Siamese nets, Ratio Matching, Noise
Contrastive Estimation, Min Probability Flow, adversarial generator/GANs

» C3: train a function that maps points off the data manifold to points on the data manifold: denoising
auto-encoder, masked auto-encoder (e.g. BERT)

P Regqularized/Architectural: [Different ways to limit the information capacity of the latent representation]

» Al: build the machine so that the volume of low energy space is bounded: PCA, K-means,
Gaussian Mixture Model, Square ICA, normalizing flows...

P A2: use a regularization term that measures the volume of space that has low energy: Sparse
coding, sparse auto-encoder, LISTA, Variational Auto-Encoders, discretization/VQ/VQVAE.

> A3: F(x,y) = C(y, G(x,y)), make G(x,y) as "constant" as possible with respect to y: Contracting
auto-encoder, saturating auto-encoder

» A4: minimize the gradient and maximize the curvature around data points: score matching



SSL-Pretrained Joint Embedding for Image -‘f‘.

JEPA/JEA pretrained with SSL Training a supervised classification head

Pred(sx) § Simple
Y Classifier
[ D(sy,5,)]
Sy d=2048
ConvNext
ConvNet

label

. “polar bear”




(Sample) Contrastive Joint Embedding

» Example: Make D(Sy,Sx) small Make D(Sy,Sx) large

» Siamese Networks
Bromley NIPS 1993] Pred(s) 3 Pred(s)
Chopra CVPR 2005] Y

Hadsell CVPR 20086] | D(sy,5) |
» SIMCLR
[Chen 2020]

» Can only produce low-
dimensional image
representations

» Around 200 D.




Distillation Methods

» Distillation-based SSL.:

» Bootstrap Your Own Latents [Grill
arXiv:2006.07733]

» SimSiam [Chen & He arXiv:2011.10566]
» DINOv2 [Oquab arXiv:2304.07193]

» |-JEPA [Assran 2023]

» V-JEPA [Bardes 2024]

» Advantages
» No negative samples, fast

» Disadvantage:

» we don’'t completely understand why it
works! [Tian et al. ArXiv:2102.06810]

I;[i I

Y. LeCun

Teacher

Transformation,
Corruption




DINOv2: Joint Embedding Architecture

. . . kNN linear
> SS L by d ISt I Iatl on Method Arch. Data Text sup. val val Real V2
Weakly supervised
cross-ent CLIP ViT-L/14 WIT-400M v 79.8 84.3 88.1 753
CLIP ViT-L /14334 WIT-400M v 80.5 85.3 88.8 758
SWAG ViT-H/14 IG3.6B v 82.6 85.7 887 T77.6
OpenCLIP ViT-H/14 LAION v 81.7 84.4 884 755
OpenCLIP  ViT-G/14 LAION v 83.2 86.2 894  77.2
. . EVA-CLIP ViT-g/14 custom™ v 83.5 86.4 89.3 774
classify quantize
Self-supervised

MAE ViT-H/14 [Net-1k X 49.4 76.6 83.3 648
DINO ViT-S/8 [Net-1k X 78.6 79.2 855  68.2

SEERv2 RG10B 1G2B X — 79.8 - -
MSN ViT-L/7 [Net-1k X 79.2 80.7 86.0 69.7
EsViT Swin-B/W=14 INet-1k X 79.4 81.3 87.0 704
Mugs ViT-L/16 INet-1k X 80.2 821 86.9 708
iBOT ViT-L/16 INet-22k X 72.9 82.3 875 724
ViT-S/14 LVD-142M X 79.0 81.1 86.6 709
DINOv2 ViT-B/14 LVD-142M X 82.1 84.5 88.3 75.1
ViT-L/14 LVD-142M X 83.5 86.3 89.5  78.0
ViT-g/14 LVD-142M X 83.5 86.5 89.6 784




DINO-style SSL scales & surpasses Supervise

» “Scaling Language-Free Visual Representation Learning”
[Fan et al. ArXiv:2504.01017]
» Scales better with model size and training set size than CLIP-style SL

AVG VQA 76 General VQA Knowledge VQA OCR & Chart VQA Vision-Centric VQA
56 - P 50 o .-® 627 o
- '-... T4_ -.‘..l- "-.., 36_ ..1 60' .’ -""
§54_ ._._.. .* 48' ’.l---...... ". : .--.'.
§ ‘o, ‘.'. 32_ ... 58- f
<524 . L 46 - 56 1
; 28 1. il
50 - T ~ T0- T T — 44 T - T T - T T - T T .
1 2 4 8 1 2 4 8 1 2 4 8 1 2 = 8 1 2 4 8
Training Data Size (B) Training Data Size (B) Training Data Size (B) Training Data Size (B) Training Data Size (B)
Scaling Training Samples with ViT-7B 1BData @ 2BData @ 4B Data @ 8B Data Scaling CLIP

Figure 4 Scaling up examples seen when training Web-DINO-7B. Performance across different VQA categories as training
data increases from 1B to 8B images. While General and Vision-Centric tasks show diminishing returns after 2B
images, OCR & Chart tasks demonstrate continued improvement, contributing to steady gains in average performance.
Further, Web-DINO consistently outperforms same-size (ViT-7B) CLIP models with different training samples seen.
The x-axis plots training data size on a log-scale.



~ Canopy Height Map using DINOV2

350 km 1km 300m

P> Estimates tree canopy
height from satellite
Images using DINOv2
features

» Using ground truth from
Lidar images

» 0.5 meter resolution
Images

P [ArXiv:2304.07213]

» Tolan et al.: Sub-meter
resolution canopy
height maps using self- = AT
supervised learning ke S
and a vision
transformer trained on
Aerial and GEDI Lidar

Meta CHM

Meta CHM

LIDAR
ground truth

>=20

RGB image

Meta CHM

canopy height (m)
=

RGB image

Figure 1: Canopy Height Map (CHM) for California, with inset showing zoomed-in region with input
RGB imagery and LIDAR ground truth
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- DINOV3 [ArXiv:2508.10104] https://ai.meta.con

TASK

Segmentation

Depth estimation

Video tracking

Instance retrieval

Image classification

Image classification

Fine-grained Image
classification

BENCHMARK

ADE-20k

NYU |

DAVIS

Met

ImageNet RealL

ObjectNet

iNaturalist
2021

DINO
VIT-B/8
0.098B

31.8

0.537

68.7

171

85.9

399

68.3

DINOV2
VIT-G/14
1.1B

49.5

0.372

76.6

446

89.9

66.4

86.1

DINOV3
VIT-7B/16
7B

55.9

0.309

83.3

55.4

90.4

79.0

89.8

Ul

SIGLIP 2
VIT-G-OPT/16
1.8B

42.7

0.494

62.9

13.9

90.5

78.6

82.7

PE
VIT-G/14
1.9B

38.9

0.436

49.8

10.6

90.4

80.2

87.0



DINO-WM:
Action planning with a world model
trained from DINO features

Model-Predictive Control with a trained predictor
[Gaoyue Zhou, Hengkai Pan, Yann LeCun, Lerrel Pinto, arXiv:2411.04983]



L
- DINO-WM [ https://dino-wm.github.io/ | IL |
» Predictor: learns to predict the state of the world in representations

space: z[t+1] = Pred( z[t], a[t] )
(@) Training DINQ-WM (b) Test-time Inference (c) Planning Performance

Zt+1

2
B

t+1

Zt
ﬂgj |
at
Or

Chamfer distance
(lower is better)


https://dino-wm.github.io/

WY || s B A
MI#QNO-WM: Planning'u f '

i l

» Objective: minimize distance between predicted state and target
state in representation space with respect to the action sequence.

Initial state Target state A





DINO-WM: Open loop roll outs

Ground Truth .| % 73 73 R.| R | R X AL |

Dreamer v3 | . e "~y "~ ~ . | = X X » /

IRIS 2| Y| R | &R XX XXX | X
ResNet | . po 2 ” ’x ’ . v 4 -~ -
RIM A L 2 |2 | X | & | > | |> | » | » | &
DINO-CLS e A > > o > p { % > »

DINO-WM (ours)




DINO-WM: Open loop roll outs
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'}l’b-WM:optiﬁé'Fhavior—partw ';*.‘

» Success rate » Chamfer distance
» (higher is better) » (lower is better)
®DINO-WM = Dreamervd = TDMPC2 B DINO-WM m Dreamervd = TDMPC2
1.25 3
1 1
1 2.25
0.75
1.5
0.5
0.75
0.25
0
0 0

PointMaz& Push-T° Wall ° Rope Granular



DINO-WM: Manipulation results
» Point Maze » PushT

goal

Reality

Prediction






MM“O'WM: Ma’ﬁgﬁwn results ' 1\

» Rope » Granular
goal
e 5 $32333s &
Reality s 22 ol 3. .
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HaR | ] T _ 1 _ i Y. LeCun
(Iﬁlianning with DINO‘W httpSZ//dInO-V\Jllm.glth

Arbitrary Goals at Test Time

Initial State

1
B




Navigation World Models

MPC planning from natural motion-conditioned videos
[Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, Yann LeCun, arXiv:2412.03572]

https://www.amirbar.net/nwm/



Navigation World Model

navigation action and time

(Ax, Ay, Agp, k)

model output

Conditional
iffusion
Transformer

(a) navigation waorld madel

input image and actions

(b)) evaluate trajectories for navigation planning by synthesizing videos (known emviranments)








Navigation World Model Teaser Vide





Image-JEPA & Video-JEPA

I-JEPA: arXiv:2301.08243 CVPR’23
Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture
M Assran, Q Duval, | Misra, P Bojanowski, P Vincent, M Rabbat, Y LeCun, N Ballas

V-JEPA: arXiv:2404.08471 TMLR’24
“Revisiting Feature Prediction for Learning Visual Representations from Video”
A Bardes, Q Garrido, J Ponce, X Chen, M Rabbat, Y LeCun, M Assran, N Ballas


https://github.com/facebookresearch/ijepa
https://github.com/facebookresearch/jepa

| r_!. !‘ Y. LeCun
Image-JEPA: uses masking & transformer ar&

» “SSL from images with a JEPA” predictor

context N

» [M. Assran et al arxiv:2301.08243] encoder - R

context

» Jointly embeds a context and a
number of neighboring patches. " f , BR o, BN

» Uses predictors —
» Uses only masking > mm---.-
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|I-JEPA Results

» Training is fast

» Non-generative method
beat reconstruction-
based generative
methods such as
Masked Auto-Encoder

» (with a frozen trunk).

Top 1 (%)

"L

ImageNet Linear Evaluation vs GPU Hours

@ IJEPA [ MAE

80 Vil-H/1i4 @@
&
78 — s
R -l ViT-H/1y4
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| A Y. LeCun
» [Bardes et al. 2024]
Pred(% S Prediction of the
Y  Representation

Mask - of the full input
Position I D(sy, 5y) I
Encoding

Representation of the
Corrupted input

Corruption,
Masking




{
- V-JEPA: results on action recognition

» Supervised head on frozen
backbone.

» Comparison with
generative models:
OmniIMAE, VideoMAE,
Hiera

» Comparison with image
models: I-JEPA, DINOv2,
OpenCLIP

Frozen Evaluation

H--ﬂ--'H-‘HI-F‘1_-'-"--“-‘-"-“-*'-F---—--F-I-H---HI-H"H-l-‘--H--F--H-Tl-l-

SOTA fine-tuned task-specific

model on 55vz (MVD) V-JEPA I
al ViT-H/16 |
- i ViT-Li16 |
X ;
(<o} OmniMAE .
= n\-"iT-Hhﬁ : n SOTA fine-tuned |
- VideoMAE
A car Hiera ViT-H/16 task-specific model |
'E; 6[] L n Hiera-H on Kgoo (UniFormer) I
E VideoMAEv2 .
o ViT-g/1g :
v ;

DINOwvz2 |
=y I-JEPA A :
- ViT.
= 20 \-’iT-I-lhﬁA "T-g/14 I
< !
“E'* ;
cg 4[] i, e Video Feature Pred.

OpenCLIP
ViT-Glig A

n Video Pixel Pred.
A Image Models

70 72 74 76 78 80 82 84 86 88 90 92

Kinetics 400




- V-JEPA: results for Iov\f/-shot action recognitio ;'

» Rows 1-3: generative architectures with reconstruction
» Row 4: V-JEPA

» Supervised head on frozen backbone.

Frozen Evaluation

K400 S5v2

(16=8=3) (16=2=3)

10% 10%
MVD ViT-L/16 62.6+0.2 68.3+0.2 772+ 0.3 429+0.38 49.5+0.6 61.0+ 0.2
VideoMAE ViT-H/16 62.3+0.3 68.5+0.2 78.2x0.1 414+ 0.8 481+0.2 60.5£0.4
VideoMAEv2 ViT-g/14 37.0: 0.3 48.8+0.4 67.8 £ 0.1 28.0%1.0 373203 54.0+0.3

V-JEPA ViT-H/1655,4 68.2+0.2 72.8+0.2 80.6+0.2 54.0+0.2 59.5+05 67910.2



' V-JEPA: Decoded Praﬁictions

I




V-JEPA and “visual common sense” / intuitive|L

» [Garrido et al. ArXiv:2502.11831]

c) Evaluation on intuitive physics videos
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- V-JEPA and “visual c%mon sense” and intui
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V-JEPA 2: large- scalép#SL from video | '
» [Assran et al. ArXiv:2506.09985] https://ai.meta.com/vjepal

. Understanding
anguage
e Alignment )
Video QA
Internet Video 5 Video V-JEPA 2
& Images Pretraining
1M hours & 1M images l‘;‘d:r::ran:i“g
rediction
— . Attentive Probe i
ﬂ = Training Action Classification
. ' Object Recognition
3 ") Action Anticipation
s
| N\ RN Action- Planning
| ? 1Ir i ook Déta - Conditioned —
. s Post-Training Robot Manipulation

62 hours


https://ai.meta.com/vjepa/

1V-JEPA 2: large- scalé*SL from video | ‘

> [Assran et al. ArXiv:2506.09985] https://lai.meta.com/vjepal
» Two-phase training: (1) masked videos, (2) action-conditioning

V-JEPA 2
predictor == 151
4
=
Mask stopigrad
toke ns :
encoder EMA ema
encoder

Mask

Masked

video frames

Unmasked
video frames

V-JEPA 2-AC
predictor == L1
4
[}
Robot :
actions 1
& poses
frozen frozen
encoder encoder

1 T

I3 i
o 8 &«LT!“ I ,;L,T?i‘
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o S e ta
t3
Previous
video frames

Future
video frame


https://ai.meta.com/vjepa/

1 A Y. LeCun
V-JEPA 2: Pre-training datasets lx\

» [Assran et al. ArXiv:2506.09985] https://lai.meta.com/vjepal

Table1 VideoMix22M (VM22M) Pretraining Dataset. To build our observation pretraining dataset, we combined four
different video sources and one image dataset. We use a source-specific sampling probability during training and apply
retrieval-based curation on YT1B to reduce noisy content (e.g., cartoon- or clipart-style).

Source Samples Type Total Hours  Apply Curation Weight

SSv2 (Goyal et al., 2017) 168K EgoVideo 168 No 0.056
Kinetics (Carreira et al., 2019) 733K ExoVideo 614 No 0.188
Howto100M (Miech et al., 2019) 1.IM  ExoVideo 134K No 0.318
YT-Temporal-1B (Zellers et al., 2022) 19M  ExoVideo 1.6M Yes 0.188

ImageNet (Deng et al., 2009) IM Images n/a No 0.250


https://ai.meta.com/vjepa/
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V-JEPA-2 planning
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Figure 6 V-JEPA 2-AC training. V-JEPPA 2-AC is trained in an autoregressive fashion, utilizing a teacher forcing
loss and a rollout loss. (Left) In the teacher forcing loss, the predictor takes the encoding of the current frame
representation as input and learns to predict the representation of the next timestep. (Right) The rollout loss involves
feeding the predictor’s output back as input, allowing the model to be trained to predict several timesteps ahead. By
optimizing the sum of these two losses, V-JEPA 2-AC enhances its ability to accurately forecast the future by reducing
error accurmulation during rollouts.



V-JEPA2 Results

TASK TYPE

Planning and Robot Control
from Image Goals

Prediction

Understanding

BENCHMARK

Reach

Grasp

Pick-and-place

Epic-Kitchens-100 action anticipation

Something-Somethingv2 action

recognition Attentive probe

Diving48 Attentive probe

Perception Test

MVPBench

V-JEPA 2

100%

45%

73%

39.7%

77.3%

90.2%

84.0%

44.5%

PREVIOUS BEST

100% (Octo)

8% (Octo)

13% (Octo)
27.6% (PlausiVL)

69.7% (InternVideo2-1B Attentive probe)

86.4% (InternVideo2-1B Attentive probe)
82.7% (PerceptionLM)

39.9% (InternVL-2.5)




V-JEPA 2 Results

Motion Understanding Appearance Understanding
Method Param. Avg. | SSv2 Diving-48 Jester | K400 COIN IN1K
Results Reported in the Literature
VideoMAEv2 (Wang et al., 2023) 1B = 56.1 — == 32.8 — 71.4
InternVideo2-1B (wang ct al., 2024b) 1B - 67.3 — — 87.9 — —
InternVideo2-6B (waug et al., 20241) 6B - 67.7 - - 88.8 - -
VideoPrism (Zhao et al., 2024) 1B = 68.5 1.3 = 87.6 = =
Image Encoders FEvaluated Using the Same Protocol
DINOvV2 (parcet et al., 2024) 1.1B 81.1 50.7 82.5 93.4 83.6 90.7 86.1
PEcoreG (Bolya et al., 2025) 1.9B 82.3 95.4 76.9 90.0 88.5 95.3 87.6"
SigLIP2 (Tschannen et al., 2025) 1.2B 81.1 49-9 75.3 91.0 87.3 95.1 88.0
Video Encoders Evaluated Using the Same Protocol
V-JEPA ViT-H (Bardes ct al, 2024) 600M 85.2 74.3 87.9 97.7 84.5 87.1 80.0
InternVideo2:2-1B (wanz et a1, 2024p) 1B 87.0 69.7 86.4 97.0 89.4 93.8 85.8
V-JEPA 2 ViT-L 300M 86.0 i S 89.0 97.6 85.1 86.8 83.5
V-JEPA 2 ViT-H 600M 86.4 74.0 89.8 977 85.3 87.9 83.8
V-JEPA 2 ViT-g 1B 87.5 75.3 90.1 97.7 86.6 90.7 84.6
V-JEPA 2 ViT-gss4 1B 88.2 | 77.3 90.2 97.8 87.3 91.1 85.1




Training JEPA with Reqgularized Methods:
Information Maximization

MCR2 [Yu et al. NeurlPS 2020],
Barlow Twins [Zbontar, Li, Misra, L, Deny, ArXiv:2103.03230, ICML’'21],

W-MSE [Ermolov et al. ICML 2021],
VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],

VICRegL [Bardes, Ponce, LeCun arXiv:2210.01571, NeurlPS 2022]
MMCR [Yerxa et al. NeurlPS 2023]



Training a JEPA with Information I\/Iaximization'

» Three terms in the cost

» Maximize information
content in representation

of x and y Pred(s, 2) prodliction
» Minimize Prediction error St
] ] Maximize ~ Maximize
Fe Wh|ten|ng Sx and Sy Information ‘ D(Sy, Sy)‘ Information

Content Content

MCR2 [Yu et al. NeurlPS 2020],
Barlow Twins [Zbontar et al.
ArXiv:2103.03230],

VICReg [Bardes, Ponce, LeCun
arXiv:2105.04906, ICLR 2022],
W-MSE [Ermolov et al. PMLR 2021],
MMCR [Yerxa et al. NeurlPS 2023]




Minimize
Prediction
Error

» Main Challenge:
Maximize

» How can we maximize information Informatio
content in representation of x and y?

- Maximize
I D(sy, 5y) I Informatior
Content

» \We do not have lower bounds on
information content !!!

» We only have upper bounds

» Because we must make assumptions
about the type of dependencies that P Basic idea: make the

exist between the variables representations fill the space

» There may be complicated but » Sample Contrastive: push vectors
unknown dependencies that lower away from each other
the information content. » Dim Contrastive: push variables

away from each other



s | FULAR YU Y. LeCun
erix of represoé’nt*S for a Batch J”Sam:

variables » Sample Contrastive Methods: I
o as d I
» Make the row of the matrix as different —
., from each other as possible
| I
%Ei » Requires a large number of rows ]
& » Don’t work in high dimension L]
S
» Dimension Contrastive Methods
» Equivalence » Make the column as different from each
[Garrido ICLR 2023, other as possible
ArXiv:2206.02574] » Requires a small number of rows
On the duality between q
contrastive and non- » Don’t work for large batches
contrastive self-
supervised learning




Sample contrastive vs Dimension (:ontrastive[{i

» [Garrido et al. Arxiv:2206.02574 ]

» “ON THE DUALITY BETWEEN CONTRASTIVE AND NON
CONTRASTIVE SELF-SUPERVISED LEARNING”

VICReg VICReg-exp VICReg-ctr SimCLR-Orig.

SimCLR-Tuned

—— " -

638 68 ————a————— 68 4 68 4
=
j=)
o
y 66 66 66 1
o
o
k]
—
A, 64 64 64 4
=]
-
&
= 62 62 62
5 —— d-d-d
—=— 8192-8192-d
60 60 60 4 60 4 - 2048-d
256 512 10242048 8192 256 512 10242048 8192 256 512 10242048 8192 256 512 10242048 8192 256 512 10242048 8192
Embedding dimension Embedding dimension Embedding dimension Embedding dimension Embedding dimension

Figure 1: VICReg, VICReg-exp and VICReg-ctr perform similarly in 100 epochs training, vali-
dating empirically our theoretical result. While the original implementation of SImCLR performs
significantly worse — which is unexpected per our theory — we are able to improve its performance to
VICReg’s level. This further validates our findings. While different projector architectures impact

performance, behaviours are similar across methods. Confer supplementary section
values and hyperparameters.

H

for numerical



I
VICReg: Variance, Invariance, Covariance Regul

» Variance: Covar(vi, v;) Covar(vi,v;)
» Maintains variance of _ Tl _ e

components of Pred(s,, z)

representations
» Covariance: ‘||Sy,§y||2‘
» Decorrelates 5:1:

components of Sy
covariance matrix of
representations

P Enc(y)

» Invariance:

» Minimizes prediction
error.

Barlow Twins [Zbontar et al. ArXiv:2103.03230], VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],



i\ Y. LeCun
- VICReg: expander makes variables pairwise ind _

» [Mialon, Balestriero, LeCun arxiv:2209.14905]
» VC criterion can be used for source separation / ICA

Covar (vi, 'u‘7

ImageNet Training
0.0100 T~ |
\ ~ - DINO
; - -~ SimCLR
no \ —-— BarlowTwins |
1
\ ~ -~ VICReg S
0.0090 { ’
B i '\
wn v N
T 0.0085 4+~
= \““:‘::«r A e S Enc( )
N Vol e S = TR [ ——
N P oy g
0.0080 1 “rseanr . ST S T —
0.0075
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VICReg: Results with linear head and semi-sph'

Linear Semi-supervised

Method Top-1  Top-5 Top-1 Top-5

1% 10% 1% 10%
Supervised 76.5 - 254 564 484 804
MoCo He et al. (2020) 60.6 - - - - -
PIRL Misra & Maaten (2020) 63.6 - - - 57.2 83.8
CPC v2 Hénalft et al. (2019) 63.8 - - - - -
CMC Tian et al. (2019) 66.2 - - - - -
SimCLR Chen et al. (2020a) 69.3 89.0 483 656 755 878
MoCo v2 Chen et al. (2020c¢) 71.1 - - - - -
SimSiam Chen & He (2020) 71.3 - - - - -
SwAV Caron et al. (2020) 71.8 - - - - -
InfoMin Aug Tian et al. (2020) 73.0 91.1 - - - -
OBoW Gidaris et al. (2021) 73.8 - - - 82.9 90.7
BYOL Grill et al. (2020) 74.3 91.6 53.2 688 784 89.0
SwAV (w/ multi-crop) Caron et al. (2020) 75.3 539 702 785 899

Barlow Twins Zbontar et al. (2021) 73.2
VICReg (ours) 73.2

79.2 893
548 695 794 895

O \O
—
—_—
L
“
o
(@)
o
-]




VICReg: Results with transfer tasks. I

Linear Classification Object Detection
Method Places205 VOCO7 iNatl8  VOCO7+12 COCO det COCO seg
Supervised 53.2 87.5  46.7 81.3 39.0 354
MoCo He et al. (2020) 46.9 79.8 315 - : :

PIRL Misra & Maaten (2020) 49.8 1.1  34.1 - - -
SIMCLR Chen et al. (2020a) 52.5 85.5 37.2 - - i
MoCo v2 Chen et al. (2020c¢) 51.8 86.4  38.6 82.5 39.8 36.1

SimSiam Chen & He (2020) - - - 82.4 - -
BYOL Grill et al. (2020) 54.0 86.6 47.6 - 40.41 37.0
SWAV (m-c) Caron et al. (2020)  56.7 88.9 48.6 82.6 41.6 37.8
OBoW Gidaris et al. (2021) 56.8 89.3 - 82.9 - -
Barlow Twins Grill et al. (2020)  54.1 862 465 82.6 40.07 36.71

VICReg (ours) 543 86.6 47.0 82.4 394 364




MC-JEPA: Motion & Content JEPA

[Bardes, Ponce, LeCun 23]

» Simultaneous SSL for
» Image recognition

Encoder

Self-Supervised
Learning
of
Content Features

» Motion estimation

» Trained on
» ImageNet 1k

» Various video datasets

Encoder

» Uses VCReg to prevent
collapse

» ConvNext-T backbone

Self-Supervised
Flow Estimation

Encoder




KITTI

Sintel

MC-JEPA: Optical Flow Estimation Results | © A

Reference Image Ground Truth MC-JEPA




< i { Y. LeCun
[lﬁplit Invariant—Equiva{#nt Representation Le'!

» Training on multiple rendered . .

views of 3D objects
» 3DIEBench dataset

» Split representation
» Invariant part:

» encodes shape identity
» Equivariant part:
» Encodes pose
» [Garrido ArXiv:2302.10283]




1 ik |

Split Invariant-Equivariant Representation Learni

» ConvNext backbone ’ ‘
» 2 heads for invariant and equivariant 5 5

» Predictor for equivariant part (JEPA)

» Predictor is a hypernetwork

» VC regularization _ Hpememork )
Yinv }—‘\ JE—

=l inv
Jo — l

Yequi_ |, ~, fequi

= llgh,equi ) L

{ :: ) » p't,b,g 'ﬁsim ﬁsim

f
Yinv z ! I

(= )=
=
P
Q__
- Fm inv
fg yequi p—f;_\\ Z:;qui —l f:,reg
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Split Invariant-Equivariant Representation ‘g?_

Classification (top-1)  Rotation prediction (R?)  Color prediction (R?)

Method

All Inv. Equi. All Inwv. Equi. All  Inv. Equi.
Baselines
Supervised 87.47 0.76
Random 0.23
Invariant and parameter prediction methods
VICReg 84.74 0.41 0.06
VICReg, g kept identical 72.81 0.56 0.25
SimCLR 86.73 0.50 0.30
SimCLR, g kept identical 7121 0.54 0.83
Parameter prediction 85.11 0.75 0.12
Equivariant methods
Only equivariant (Original predictor) 86.93 0.51 023
Only equivariant (Our predictor) 86.10 0.60 0.24
EquiMod (Original predictor) 87.19 0.47 0.21
EquiMod (Our predictor) 87.19 0.60 0.13

SIE (Ours) 82.94 82.08 80.32 0.73 0.23 0.73 0.07 0.05 0.02




- Split Invariant-Equivariant Representation Le

VICReg SimCLR Param Pred OnlyEqui EquiMod SIE-inv

. H | .

Figure 3: Retrieval of nearest representations. Starting from the representation associate to the object in the green frame on
the left, we compute its nearest neighbours for all considered methods and show the 3 closest.




World Model trained with VCReg

Learning from Reward-Free Offline Data:

A Case for Planning with Latent Dynamics Models
Vlad Sobal, Wancong Zhang, Kynghyun Cho, Randall Balestriero, Tim G. J. Rudner, Yann LeCun

ArXiv:2502.14819
https://latent-planning.github.io/



Planning with Latent-Space Dynamics Model (PL

» 23 datasets, 6 methods.

23 different datasets
of varying quality

Limited layout
coverage

Random policy
trajectories

Short trajectories

e Sty Oty g4 -

6 various methods
for offline reward-

free data

11°°]]
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L

P

Evaluations
of 6 desirable properties
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Generalizing to new
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|

fee )

Generalizing to new tasks

J

Ve

{ Trajectory stitching ]

N HILP  GCIQL, GCBC

X X ¢

Results
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~ Training the JEPA Wiﬂy’&VCReg
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Planning a path in a maze (visible from an image) «

In training Medium Out of dlstrlbutlon
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VICReg-based SSL for PDEs

ArXiv:2307.05432 NeurlPS 2023

Self-Supervised Learning with Lie Symmetries for Partial Differential Equations
Grégoire Mialon, Quentin Garrido, Hannah Lawrence, Danyal Rehman, Yann LeCun, Bobak T. Kiani



SSL for PDE: extracting dynamical parameters

. . i Application to
k rVi Learnin Learned Representation
Unlabeledaa | Self-Supe §ed earning | Map f, Downstream Tasks
5 " Classification
ry ry Dog
. \Detection

rey

PDE Augmem il A Regression
(Burgers’ % _» f P i ’ v = 0.003
Equation) 0 I : . \T- -

: . Ime-stepping




Using VICReg to learn representations of the equation. .

Self-supervised pretraining

X

Dy

g\x_.faﬁf.

Ereg

Esim

Ereg

Supervised downstream task

»

¥pUd'e

H_I H_J
Frozen Trained

Representation conditioned time-stepping
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Trained
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SSL for PDE

An example: the Kuramoto-Sivashinsky (KS) equation is a model of chaotic flow given by
Ut + UlUyx + Uxx + Uxxxx = 07

where u(x, t) is the dependent variable.

(&
® Often shows up in reaction-diffusion systems or

flame propagation problems. / ™
® Solution can be seen as an image... : ‘ \ )

® Admit Lie point symmetries: smooth
transformations of a solution producing another /
solution to the same PDE.

Time, ¢

® (Can be used to learn

models [Brandstetter et al., 2022].
A 1D solution to KS (x-axis is space).



SSL for PDE: Data “augmentation” I

u Temporal Shift, g, - (¢, z, u) Spatial Shift, g, - (¢, z, u) Galilean Boost, g3 - (¢, z, u)
ﬂ V{/
/.- e
\ } ‘ / (N
g
O
:/

Space, z

Time, ¢

One parameter Lie point symmetries for the Kuramoto-Sivashinsky (KS) PDE. Left to right: un-modified solution (u),
temporal shifts (g1), spatial shifts (g2), and Galilean boosts (g3) with corresponding infinitesimal transformations in the Lie

algebra placed inside the figure. The shaded red square denotes the original (x, t), while the dotted line represents the
same points after the augmentation is applied.

Temporal Shift:  gy(e€) :(x,t,u) = (x,t + €, u)
Spatial Shift:  go(e) :(x, t,u) — (x + €, t, u)
Galilean Boost:  g3(€) :(x,t,u) = (x +€t, t,u+€)
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The incompressible Navier-Stokes equation is given by

1
u=—u-Vu— -Vp+vVu+f, Vu=0.
P
Downstream tasks for Navier-Stokes

Buoyancy Regression Time-stepping
0.010 0.00090

26k 2D trajectories, 56 frames (128x128) T
each [Gupta and Brandstetter, 2023]. 0.008

® Task 1: regressing buoyancy f.

0.00085

0.00080

0.006 -

0.00075 -

Task 2: Time-stepping, predict next frames
given past frames.

0.004 -
0.00070 -

SSL features are effective and easy to use.

Mean Squared Error

002 -
0.00 0.00065 -

0.000 - ~ 0.00060 -
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Comparing SSL features resulting from different augmentations

Best supervised

Masking + t-translation

* Navier-Stokes: 8 Lie symmetrie groups,
with varying strength.

Masking

‘e . . Masking + scaling
® |ntuition is not sufficient to select

augmentations.

Masking + rotation

Masking + linear boost

 Optimal mix is different from
supervised [Brandstetter et al., 2022)].

=

asking + quadratic boost

Masking + x-translation

® Masking is necessary but not really
sufficient.

Masking + effective symmetries (final)

0002 0003 0004  0.005
Buoyancy regression MSE

0.000  0.001



SSL pre-training gives better results than pureJ '

SSL vs. supervised: open question in vision [Sariyildiz et al., 2023, Oquab et al., 2023]. Here, big discrepancy.

le—2 Viscosity regression le—3 Buoyancy regression
1.201
-__-------------'SupeI'ViSGd‘ B N B BN N B N BN N S BN B N B .
1151 == SSL w/LPS 5 7.5
O
o i
§ 1.10 m 70
& D 6.5 .
D 05 . 8 == 1 Average supervised
:q>J g 6.0 == 1 Best supervised
B 1.001 - o == SSLw/LPS
o 0.95 | =
0 5.0
i .
0.90 2 . == L
A1 : g B
0-85 T T T T T T T T T T T T T T T T T T
1000 2000 3000 4000 5000 6000 7000 8000 9000 2000 4000 6000 8000 10000 12000 14000 16000 18000
Unlabeled dataset size Unlabeled dataset size

Influence of dataset size on regression tasks. (Left) Kinematic regression on Burger's equation. (Right) Buoyancy
regression on Navier-Stokes' equation.



Science is all about finding abstract represen ‘ |

VvV Vyy

1 LI

Find an abstract state representation that allows to make predictions
Extract the state representation from observation/measurement
Predict outcome resulting from an intervention/experiment

Irrelevant and state vector of Pred(s,) Prediction of the
: relevant red\sy P Representation of
unpredlctable variables Sy The resulting state

information is

_— D 3

eliminated from the | (s, Sy)l
representatlon Sy Representation of
The representation The resulting state
contains

information that
makes prediction y .
Initial transformation Resulting

pOSSi ble System experiment System
Observation Observation




» Lower levels make short-range
(short-term) predictions.

» Preserve detalils.

» Are inaccurate or computationally
difficult for long-range predictions

» Higher levels make longer-range
(longer-term) predictions.
» Representations contain less details

» Can make accurate long-term
predictions, but with fewer details.
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Multi-level hierarchy of models and represent]%

» Lower levels make short-range ‘ Machines ‘

predictions, but with fewer details.

Quantum field

: ‘ Societies ‘
(short-term) predictions.
» Preserve details. ‘ Objects ‘ ‘ Individuals ‘
» Are inaccurate or computationally ‘ [ ‘ ‘ N ‘
difficult for long-range predictions * <
‘ Cells ‘
» Higher levels make longer-range ‘ Molecules ‘
(longer-term) predictions. ‘ Organelles ‘
: : . ‘ Atoms ‘
» Representations contain less details _
‘ Proteins ‘
» Can make accurate long-term ‘ Particles ‘ 7y




~ Ultimately, we want I—’I.fi“*rarchical World Models

» Hierarchical Planning: going from NYU to Paris

Taxi or train? Which
EWR or JFK? Airline?

@ Guardrail2

Guardrail2

Encl(x)

Distance
To Paris

At NYU

hail or call?
Obstacles? Traffic?

@ Guardraill @ Guardraill g N pJis =6
To airport

Sitting in
my NYU

office @ @

Go down Grab a taxi
In the street To airport




| -Infomax-ReguIarized’Qequence-LeveI JEPA h,

» Scalable architecture

» Causal Predictor
» Trained as an auto-
encoder
» Collapse Prevention
with InfoMax
» e.g. VCRegq,

MCR2, MMCR +
others

» Encoder with limited
receptive field

» Bounded on the right

1

9099

”~
I Predicz—l Predicﬂ Predic:i Predictl

~

Divergence

InfoMax




Training a Sequence-Lev

ol JEPA “

0000000606




- Training an Action- Cdﬂdltloned Sequence- Le' <)

A S

Causal Predlctor

@ "@

AL XXX

Encoder )

@@

Action Encoder

InfoMax




~ Hierarchical JEPAArtHutecture and Training l

» 2" stage
encoder

» Strided or

led r Causal Predictor
gr(')coh?so as é t “'
to make ’ @
longer-term
predictions (Strided) Encoder 2
éé@éé“'é
—
& &




- Recommendations:

» Abandon generative models
» in favor joint-embedding architectures

» Abandon probabilistic model
» in favor of energy-based models

» Abandon contrastive methods
» in favor of regularized methods

» Abandon Reinforcement Learning
» In favor of model-predictive control

» Use RL only when planning doesn’t yield the
predicted outcome, to adjust the world model or the
critic.

» IF YOU ARE INTERESTED IN HUMAN-LEVEL Al,
DON'T WORK ON LLMs




- Problems to Solve

» Large-scale world-model training
» From video, speech, text, code, dialogs, math....

» Planning algorithms

» Gradient-based methods, ADMM, gradient-free methods for discrete
search

» JEPA with latent variables
» Learning and planning in non-deterministic environments

> [atent variable regularization to prevent collapse

» Planning in the presence of uncertainty
» Mixed gradient-based / combinatorial optimization

» Herarchical planning
» Very large-scale differentiable associative memories



! il Y. LeCun
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- Problems to Solve ,L

» Mathematical Foundations of Energy-Based Learning and inference
» The geometry of energy surfaces, scaling laws, bounds...

» How to maximize information content or minimize low-energy volume?

» Learning Cost Modules (Inverse RL)
» Energy-based approach: give low cost to observed trajectories

» Planning with inaccurate world models
» Preventing bad plans in uncertain parts of the space

» Exploration to adjust the world models
» Intrinsic objectives for curiosity, play

» New objectives to drive SSL
» Driving SSL to focus on interesting or useful features



Future Universal Virtual Assistants

» All of our interactions with the digital world
will be mediated by Al assistants.
» They will constitute a repository of all

human knowledge and culture
» They will constitute a shared infrastructure

Like the Internet today.

» These Al platform MUST be open source

» We need a diverse set of Al assistants for the same reasons we
need a free press: linguistic, cultural, & value system diversity.

» Culture & knowledge cannot be controlled by a few companies
on the West Coast of the US or in China.

» Open source Al platforms are necessary
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