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Y. LeCun

We Need Human-Level AI for Intelligent Assistant

In the near future, all of our interactions with the 
digital world will be mediated by AI assistants.
Intelligent assistants
that can helps us in our daily lives
Smart glasses
Communicates through voice, vision, display, EMG…

We need machines with human-level intelligence
Machines that understand how the world works

Machines that can remember

Machines that can reason and plan.

“Her” 
(2013)

Meta Orion 
(2024)



Y. LeCun

The Ubiquitous AI Assistant is Becoming A Reality

Meta’s Orion Demonstrator (future)
Cameras / microphones

Augmented reality color display

Voice + EMG bracelet interface

Ray-Ban Meta (today)
Cameras / microphone / speakers
no display
Voice interface to Meta AI 
assistant



Y. LeCun

But Machine Learning Sucks! (compared to humans and animals)

Supervised learning (SL) requires large numbers of labeled samples.
Reinforcement learning (RL) requires insane amounts of trials.
Self-Supervised Learning (SSL) works great but...
Generative prediction only works for text and other discrete modalities

Animals and humans:
Can learn new tasks very quickly.

Understand how the world works

Can reason an plan

Humans and animals have common sense
Their behavior is driven by objectives (drives)
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What’s a universal foundation model architecture

Captures structure in the data
Discovers dependencies in a task-independent way

Trained with Self-Supervised Learning (SSL)
No need for labels

Learns abstract representations in the data
Representations that allow to make predictions

Learns a predictive model
Observation x, transformed observation y=Trans(x,a)

Encoding : representations sx = Enc(x), sy = Enc(y)

Prediction of sy :  py = Pred(sx, a)
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Predictive Model with JEPA

Joint Embedding Predictive Architecture (JEPA)
[LeCun 2022], [Garrido 2023], [Bardes 2023], [Assran 2023], [Garrido 2024]

Transformation,
Action

Representation of the
State of the world
At time t

Prediction of the
Representation of the
State of the world
At time t+1
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AE Collapse Prevention through Architectural Constraints

Train an auto-encoder with causal connections
No connection between an input and its corresponding output
LLMs / GPT architectures are the most popular example
Trained to predict the next input.

x[t-3] x[t-2] x[t-1] x[t]x[t-7] x[t-6] x[t-5] x[t-4]

x[t-3] x[t-2] x[t-1] x[t]x[t-4]

Predict Predict Predict PredictPredict Divergence
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Predictor

Auto-Regressive LLM. Inject predicted token in the input

Outputs one token after another through feed-forward prediction
Tokens may represent words, image patches, speech segments…
Predictor has a fixed number of layers
Only works for discrete domains (text, DNA….)

 Stochastic
Predictor

x[t-2] x[t-1] x[t] x[t+1]

Prompt

Predictor
 Stochastic
Predictor

x[t-1] x[t] x[t+2]

Context

x[t+1]

Predicted token
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Auto-Regressive Generative Models Suck!

Auto-Regressive LLMs are doomed.
They cannot be made factual, non-toxic, etc.
They are not controllable
Probability e that any produced token takes 
us outside of the set of correct answers
Probability that answer of length n is correct 
(assuming independence of errors):

P(correct) = (1-e)n

This diverges exponentially.
It’s not fixable (without a major redesign).

See also [Dziri...Choi, ArXiv:2305.18654]

Tree of all possible
token sequences

Subtree of 
“correct” answers
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Can we train Generative Architecture with Continuous Data?

Short answer: NO!!! 
It works for discrete domains, not high-dim domains
Generative world model architecture

Masking,
Action

Representation of the
State of the world
At time t

This is a [...] of text extracted 
[...] a large set of [...] articles

This is a piece of text extracted 
from a large set of news articles

Prediction of the
State of the world
At time t+1
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Generative Architectures DO NOT Work for Images and video

Because the world is only partially 
predictable
A predictive model should 
represent multiple predictions
Probabilistic models are 
intractable in high-dim continuous 
domains.
Generative Models must predict 
every detail of the world

My solution: Joint-Embedding 
Predictive Architecture

[Henaff, Canziani, LeCun ICLR 2019]

[Mathieu, 
 Couprie, 
 LeCun
 ICLR 2016]
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Joint Embedding World Model: Self-Supervised Training

Joint Embedding Predictive Architecture (JEPA)
[LeCun 2022], [Garrido 2023], [Bardes 2023], [Assran 2023], [Garrido 2024]

Transformation,
Action

Representation of the
State of the world
At time t

Prediction of the
Representation of the
State of the world
At time t+1
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Architectures: Generative vs Joint Embedding

Generative: predicts y (with all the details, including irrelevant ones)
Joint Embedding: predicts an abstract representation of y
JEPA lifts the abstraction level, generative architectures do not.

a) Generative Architecture
Examples: VAE, MAE...

b) Joint Embedding Architecture
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This is how models are built in traditional physics

Find an abstract state representation that allows to make predictions
Extract the state representation from observation/measurement
Predict outcome resulting from an intervention/experiment

transformation
experiment

state vector of 
relevant 
variables

Prediction of the
Representation of 
The resulting state

Representation of 
The resulting state

Initial
System
Observation

Resulting
System
Observation

Irrelevant and 
unpredictable 
information is 
eliminated from the 
representation
The representation 
contains 
information that 
makes prediction 
possible
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How do babies learn how the world works?
P
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Physics

Actions

Objects

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Age

Age (months)

stability,
support

gravity, inertia
conservation of
momentum

Object permanence

solidity, rigidity

shape
constancy

crawling walking
emotional contagion

rational, goal-
directed actions

face tracking

proto-imitation

pointing

biological
motion

false perceptual
beliefs

helping vs
hindering

natural kind categories

Social

Communication

[Emmanuel
   Dupoux]

How do we get 
machines to learn 
like babies?
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Current architectures are missing something really big!

Never mind humans, cats and dogs can do amazing feats
Current robots intelligence doesn’t come anywhere close

Any house cat can plan highly complex actions
Any 10 year-old can clear up the dinner table and fill up the 
dishwasher without learning (“zero-shot”)
Any 17 year-old can learn to drive a car in 
20 hours of practice
AI systems that can pass the bar exam, do 
math problems, prove theorems….
...but where are my Level-5 self-driving car 
and my domestic robot?
We keep bumping into Moravec’s paradox
Things that are easy for humans are difficult 
for AI and vice versa.
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Our world model needs to be trained from sensory inputs

LLM
Trained on 3.0E13 tokens (2E13 words). Each token is 3 bytes.

Data volume: 0.9E14 bytes. 

Would take 450,000 years for a human to read (12h/day, 250 w/minute)

Human child
16,000 wake hours in the first 4 years (30 minutes of YouTube uploads)

2 million optical nerve fibers, carrying about 1 byte/sec each.

Data volume: 1.1E14 bytes

A four year-old child has seen more data than an LLM !
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Desiderata for AMI (Advanced Machine Intelligence)

Systems that learn world models from 
sensory inputs
E.g. learn intuitive physics from video

Systems that have persistent memory
Large-scale associative memories

Systems that can plan actions
So as to fulfill an objective

Systems that can reason
Inventing new solutions to unseen 
problems

Systems that are controllable & safe
By design, not by fine-tuning.
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Inference: feed-forward propagation vs optimization

What is reasoning and planning?
Feed-forward propagation is insufficient
Complex inference requires the optimization of an objective
Every computational problem can be reduced to optimization
This includes every inference and planning problem.

Energy-Based Model

Perception

  output

Objective

observation

representation

Optimization

Perception

  outputobservation

representation
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Inference through optimization: Objective-Driven AI.

Inference through optimization is used in 
classical methods
Probabilistic graphical models, Bayesian nets

Model-Predictive Control in robotics

Search & planning in “classical” AI

In the past, all of AI was viewed as a search 
or optimization problem
Path planning, Block World, Towers of Hanoi, 
SAT, logical inference

Perception

  output

Objective

observation

representation

Optimization

Optimization-based inference enables zero-shot “learning”
It can find innovative solutions to unseen problems.

All game-playing AI systems use search/planning

Optimization-based inference is “System 2”
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Capturing Dependencies with Energy-Based Models

The only way to formalize & understand all model types
Gives low energy to compatible pairs of x and y

Gives higher energy to incompatible pairs

time or space → 

Energy
Landscape

x

F(x,y)

y

x

y
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2. World Model for Planning/Reasoning 

Perception: Computes an abstract representation of the state of the world
Possibly combined with previously-acquired information in memory

World Model: Predict the state resulting from an imagined action sequence
Task Objective: Measures divergence to goal
Guardrail Objective: Immutable objective terms that ensure safety
Operation: Finds an action sequence that minimizes the objectives

 World ModelPerception

 Action
Sequence

Guardrail
Objective

Task
Objective

Initial World state
representation

Predicted state
Sequence
representation

memory
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2. Models for Physics Experiments 

Encoder: Computes an abstract representation of the state of the system
World Model: Predict the state resulting from an imagined experiment or 
intervention.
Hypothesis Objective: Measures divergence to the result expected from the 
experiment
Constraints: that the trajectory must satisfy.
Find an action an experiment that validates or invalidates the hypothesis

 World ModelEncoder

 Intervention /
experiment

Constraints

hypothesis
Objective

Representation of
Initial state

Representation
of predicted state
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Objective-Driven AI: Multistep/Recurrent World Model

Same world model applied at multiple time steps
Guardrail costs applied to entire state trajectory
This is identical to Model Predictive Control (MPC)
But with a trained world model

Action inference by minimization of the objectives
Using gradient-based method, graph search, dynamic prog, A*, MCTS,….

 World ModelPerception  World Model

 action0

Guardrail
Costs

Task
Cost

Guardrail
Costs

 action1

World state
representation

Predicted state
representation

Final state
representation
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Objective-Driven AI: Non-Deterministic World Model

The world is not deterministic or fully predictable
Latent variables parameterize the set of plausible predictions
Can be sampled from a prior or swept through a set.

Planning can be done for worst case or average case

Uncertainty in outcome can be predicted and quantified

 World ModelPerception  World Model

 action0

Guardrail
Costs

Task
Cost

Guardrail
Costs

 action1

World state
representation

Predicted state
representation

Final state
representation

Latent Latent
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Objective-Driven AI: Hierarchical Planning

Hierarchical Planning: going from NYU to Paris

 Pred1Enc1(x)
s1At NYU

 Pred0Enc0(x)

Sitting in
my NYU
office  a1

 Pred1

 Pred0

 a0

Distance
To Paris

z0 z0

z1 z1

Guardrail1 Guardrail1

Guardrail2 Guardrail2

Distance
To airport

Go down
In the street

Grab a taxi
To airport

Taxi or train?
EWR or JFK?

Which
Airline?

Obstacles?
hail or call?
Traffic?



     Objective-Driven AI Systems
AI that can learn, understand the world,

reason, plan,
Yet is safe and controllable

“A path towards autonomous machine intelligence”
https://openreview.net/forum?id=BZ5a1r-kVsf

[previous versions of this talk available on YouTube]

https://openreview.net/forum?id=BZ5a1r-kVsf
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Modular Cognitive Architecture for AMI

Configurator
Configures other modules for task

Perception
Estimates state of the world

World Model
Predicts future world states

Cost
Compute “discomfort”

Actor
Find optimal action sequences

Short-Term Memory
Stores state-cost episodes percept

action

Actor

World Model

Intrinsic
cost

Perception

Short-term
memory

configurator

Critic
Cost



How could Machines Learn 
World Models from Observations?

Self-Supervised Learning 
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Joint Embedding Architectures

Computes abstract representations for x and y
Tries to make them equal or predictable from each other.

a) Joint Embedding Architecture (JEA)
Examples: Siamese Net, Pirl, MoCo, 
SimCLR, BarlowTwins, VICReg,
 

b) Deterministic Joint Embedding 
    Predictive Architecture (DJEPA)
Examples: BYOL, VICRegL, I-JEPA

c) Joint Embedding Predictive 
    Architecture (JEPA)
Examples: Equivariant VICReg
I-JEPA…..
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Architecture for action-conditioned world models: JEPA

JEPA: Joint Embedding 
Predictive Architecture.
x: observed past and present

y: future

a: action

z: latent variable (unknown)

D( ): prediction cost

C( ): surrogate cost

JEPA predicts a representation 
of the future Sy from a 
representation of the past and 
present Sx



Energy-Based Models for
Self-Supervised Learning

Capturing dependencies through an energy function

Probabilistic modeling is intractable in high-dimensional 
continuous domains.
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Energy-Based Models: Implicit function

The only way to formalize & understand all model types
Gives low energy to compatible pairs of x and y

Gives higher energy to incompatible pairs

time or space → 

Energy
Landscape

x

F(x,y)

y

x

y
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Training Energy-Based Models:  Collapse Prevention

A flexible energy surface can take any shape.
We need a loss function that shapes the energy surface so that:
Data points have low energies

Points outside the regions of high data density have higher energies.

      Collapse!               Contrastive Method       Regularized Methods
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EBM Training: two categories of methods

Contrastive methods
Push down on energy of 
training samples

Pull up on energy of 
suitably-generated 
contrastive samples

Scales very badly with 
dimension

Regularized Methods
Regularizer minimizes the 
volume of space that can 
take low energy

Contrastive
Method

Regularized
Method

Low energy
region

Training
samples

Contrastive
samples

x

x

x

y

y

y
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EBM Architectures

Some architectures can lead to a collapse of the energy surface

d) Joint Embedding Architecture
    CAN COLLAPSE

b) Generative latent-variable Architecture
    CAN COLLAPSE

a) Prediction / regression
    NO COLLAPSE

c) Auto-Encoder
    CAN COLLAPSE
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Energy-Based Models vs Probabilistic Models

Probabilistic models are a special case of EBM
Energies are like un-normalized negative log probabilities

Why use EBM instead of probabilistic models?
EBM gives more flexibility in the choice of the scoring 
function.

More flexibility in the choice of objective function for 
learning

From energy to probability: Gibbs-Boltzmann 
distribution
Beta is a positive constant

Energy
Function

x

F(x,y)

y



Y. LeCun

Contrastive Methods vs Regularized/Architectural Methods

Contrastive: [they all are different ways to pick which points to push up]
C1: push down of the energy of data points, push up everywhere else: Max likelihood (needs 
tractable partition function or variational approximation)

C2: push down of the energy of data points, push up on chosen locations: max likelihood with 
MC/MMC/HMC, Contrastive divergence, Metric learning/Siamese nets, Ratio Matching, Noise 
Contrastive Estimation, Min Probability Flow, adversarial generator/GANs

C3: train a function that maps points off the data manifold to points on the data manifold: denoising 
auto-encoder, masked auto-encoder (e.g. BERT)

 Regularized/Architectural: [Different ways to limit the information capacity of the latent representation]

A1: build the machine so that the volume of low energy space is bounded: PCA, K-means, 
Gaussian Mixture Model, Square ICA, normalizing flows…

A2: use a regularization term that measures the volume of space that has low energy: Sparse 
coding, sparse auto-encoder, LISTA, Variational Auto-Encoders, discretization/VQ/VQVAE.

A3: F(x,y) = C(y, G(x,y)), make G(x,y) as "constant" as possible with respect to y: Contracting 
auto-encoder, saturating auto-encoder

A4: minimize the gradient and maximize the curvature around data points: score matching
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SSL-Pretrained Joint Embedding for Image Recognition

Simple
Classifier

Cross
entropy

label

JEPA/JEA pretrained with SSL

“polar bear”

Training a supervised classification head

d=2048

ConvNext
ConvNet
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(Sample) Contrastive Joint Embedding

Make D(Sy,Sx) small Make D(Sy,Sx) large Example:
Siamese Networks 
[Bromley NIPS 1993]

[Chopra CVPR 2005]

[Hadsell CVPR 2006]

SimCLR

[Chen 2020]

Can only produce low-
dimensional image 
representations
Around 200 D.
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Distillation Methods

Distillation-based SSL:
Bootstrap Your Own Latents [Grill 
arXiv:2006.07733]

SimSiam [Chen & He arXiv:2011.10566]

DINOv2 [Oquab arXiv:2304.07193]

I-JEPA [Assran 2023]

V-JEPA [Bardes 2024]

Advantages
No negative samples, fast

Disadvantage: 
we don’t completely understand why it 
works! [Tian et al. ArXiv:2102.06810]

Teacher 
branchStudent 

branch

Transformation,
Corruption

Weights  EMA
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DINOv2: Joint Embedding Architecture

SSL by distillation

quantize classify

 cross-ent
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DINO-style SSL scales & surpasses Supervised Methods

“Scaling Language-Free Visual Representation Learning” 
[Fan et al. ArXiv:2504.01017]
Scales better with model size and training set size than CLIP-style SL
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Canopy Height Map using DINOv2

Estimates tree canopy 
height from satellite 
images using DINOv2 
features
Using ground truth from 
Lidar images

0.5 meter resolution 
images

[ArXiv:2304.07213]
Tolan et al.: Sub-meter 
resolution canopy 
height maps using self-
supervised learning 
and a vision 
transformer trained on 
Aerial and GEDI Lidar
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DINOv3 [ArXiv:2508.10104] https://ai.meta.com/dinov3/
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DINOv3 [ArXiv:2508.10104] https://ai.meta.com/dinov3/



DINO-WM: 
Action planning with a world model 
trained from DINO features

Model-Predictive Control with a trained predictor
[Gaoyue Zhou, Hengkai Pan, Yann LeCun, Lerrel Pinto, arXiv:2411.04983]
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DINO-WM     [  https://dino-wm.github.io/  ] 

Predictor: learns to predict the state of the world in representations 
space: z[t+1] = Pred( z[t], a[t] )

https://dino-wm.github.io/
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DINO-WM: Planning 

Objective: minimize distance between predicted state and target 
state in representation space with respect to the action sequence.

 World Model

D
IN

O
v2

 World Model

 action0

Distance

 action1

 World Model

 Action i

 World Model

 Action n D
IN

O
v2

Initial state Target state
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DINO-WM: Open loop roll outs

DINO-WM (ours)

DINO-CLS

R3M

ResNet

IRIS

Dreamer v3

Ground Truth
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DINO-WM: Open loop roll outs

Init obs

Ground
Truth

D-CLS

R3M

D-WM
(ours)
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DINO-WM: optimizing behavior – part 1

Success rate
(higher is better)

Chamfer distance
(lower is better)
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DINO-WM: Manipulation results 

Point Maze Push T

Reality

Prediction

goal
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DINO-WM: Manipulation results 

Rope Granular

Reality

Prediction

goal
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Planning with DINO-WM   https://dino-wm.github.io/



Navigation World Models

MPC planning from natural motion-conditioned videos
[Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, Yann LeCun, arXiv:2412.03572]

https://www.amirbar.net/nwm/
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Navigation World Model
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Generated Video Given a Motion Action Sequence





Y. LeCun

Navigation World Model Teaser Video 




Image-JEPA  &  Video-JEPA

I-JEPA: arXiv:2301.08243 CVPR’23   https://github.com/facebookresearch/ijepa
Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture
M Assran, Q Duval, I Misra, P Bojanowski, P Vincent, M Rabbat, Y LeCun, N Ballas

V-JEPA: arXiv:2404.08471 TMLR’24  https://github.com/facebookresearch/jepa
“Revisiting Feature Prediction for Learning Visual Representations from Video”
A Bardes, Q Garrido, J Ponce, X Chen, M Rabbat, Y LeCun, M Assran, N Ballas

https://github.com/facebookresearch/ijepa
https://github.com/facebookresearch/jepa
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Image-JEPA: uses masking & transformer architectures

“SSL from images with a JEPA”
[M. Assran et al arxiv:2301.08243]

Jointly embeds a context and a 
number of neighboring patches.
Uses predictors

Uses only masking
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I-JEPA Results

Training is fast

Non-generative method 
beat reconstruction-
based generative 
methods such as 
Masked Auto-Encoder
(with a frozen trunk).
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Video-JEPA

[Bardes et al. 2024]

Corruption,
Masking

Representation of the
Corrupted input

Prediction of the
Representation 
of the full inputMask

Position
Encoding
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V-JEPA: results on action recognition

Supervised head on frozen 
backbone.

Comparison with 
generative models: 
OmniMAE, VideoMAE, 
Hiera

Comparison with image 
models: I-JEPA, DINOv2, 
OpenCLIP
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V-JEPA: results for low-shot action recognition

Rows 1-3: generative architectures with reconstruction
Row 4: V-JEPA
Supervised head on frozen backbone.
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V-JEPA: Decoded Predictions
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V-JEPA and “visual common sense” / intuitive physics

[Garrido et al. ArXiv:2502.11831]
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V-JEPA and “visual common sense” and intuitive physics
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V-JEPA 2: large-scale SSL from video 

[Assran et al. ArXiv:2506.09985] https://ai.meta.com/vjepa/

https://ai.meta.com/vjepa/
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V-JEPA 2: large-scale SSL from video 

[Assran et al. ArXiv:2506.09985] https://ai.meta.com/vjepa/
Two-phase training: (1) masked videos, (2) action-conditioning

https://ai.meta.com/vjepa/
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V-JEPA 2: Pre-training datasets

[Assran et al. ArXiv:2506.09985] https://ai.meta.com/vjepa/

https://ai.meta.com/vjepa/
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V-JEPA 2 training
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V-JEPA-2 planning
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Training the Action-Conditioned Predictor
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V-JEPA 2 Results
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V-JEPA 2 Results



Training JEPA with Regularized Methods:
Information Maximization

MCR2 [Yu et al. NeurIPS 2020],
Barlow Twins [Zbontar, Li, Misra, L, Deny, ArXiv:2103.03230, ICML’21],
W-MSE [Ermolov et al. ICML 2021], 
VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],
VICRegL [Bardes, Ponce, LeCun arXiv:2210.01571, NeurIPS 2022]
MMCR [Yerxa et al. NeurIPS 2023]
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Training a JEPA with Information Maximization

Three terms in the cost
Maximize information 
content in representation 
of x and y

Minimize Prediction error

a

Maximize
Information

Content

Maximize
Information

Content

Minimize
Prediction

Error

Whitening Sx and Sy

MCR2 [Yu et al. NeurIPS 2020],
Barlow Twins [Zbontar et al. 
ArXiv:2103.03230], 
VICReg [Bardes, Ponce, LeCun 
arXiv:2105.04906, ICLR 2022],
W-MSE [Ermolov et al. PMLR 2021],
MMCR [Yerxa et al. NeurIPS 2023]
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Training a JEPA with Information Maximization

Main Challenge:
How can we maximize information 
content in representation of x and y?

We do not have lower bounds on 
information content !!!

We only have upper bounds

Because we must make assumptions 
about the type of dependencies that 
exist between the variables

There may be complicated but 
unknown dependencies that lower 
the information content.

a

Maximize
Information

Content

Maximize
Information

Content

Minimize
Prediction

Error

Basic idea: make the 
representations fill the space
Sample Contrastive: push vectors 
away from each other

Dim Contrastive: push variables 
away from each other
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Matrix of representations for a Batch of Samples

Sample Contrastive Methods:
Make the row of the matrix as different 
from each other as possible

Requires a large number of rows

Don’t work in high dimension

Dimension Contrastive Methods
Make the column as different from each 
other as possible

Requires a small number of rows

Don’t work for large batches

variables

sa
m

pl
es

Equivalence
[Garrido ICLR 2023, 
ArXiv:2206.02574] 
On the duality between 
contrastive and non-
contrastive self-
supervised learning
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Sample contrastive vs Dimension contrastive?

[Garrido et al. Arxiv:2206.02574 ]
“ON THE DUALITY BETWEEN CONTRASTIVE AND NON 
CONTRASTIVE SELF-SUPERVISED LEARNING”
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VICReg: Variance, Invariance, Covariance Regularization

Variance: 
Maintains variance of 
components of 
representations

Covariance:
Decorrelates 
components of 
covariance matrix of 
representations

Invariance:
Minimizes prediction 
error.

a

Barlow Twins [Zbontar et al. ArXiv:2103.03230], VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022],



Y. LeCun

VICReg: expander makes variables pairwise independent

[Mialon, Balestriero, LeCun arxiv:2209.14905]
VC criterion can be used for source separation / ICA
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VICReg: Results with linear head and semi-supervised.
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VICReg: Results with transfer tasks.
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MC-JEPA:  Motion & Content JEPA

[Bardes, Ponce, LeCun 23]

Simultaneous SSL for
Image recognition

Motion estimation

Trained on
ImageNet 1k

Various video datasets

Uses VCReg to prevent 
collapse
ConvNext-T backbone
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MC-JEPA:  Optical Flow Estimation Results
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Split Invariant-Equivariant Representation Learning

Training on multiple rendered 
views of 3D objects
3DIEBench dataset

Split representation
Invariant part:

encodes shape identity

Equivariant part:

Encodes pose

[Garrido ArXiv:2302.10283]
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Split Invariant-Equivariant Representation Learning

ConvNext backbone
2 heads for invariant and equivariant
Predictor for equivariant part (JEPA)
Predictor is a hypernetwork
VC regularization
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Split Invariant-Equivariant Representation Learning
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Split Invariant-Equivariant Representation Learning



World Model trained with VCReg

Learning from Reward-Free Offline Data: 
A Case for Planning with Latent Dynamics Models
Vlad Sobal, Wancong Zhang, Kynghyun Cho, Randall Balestriero, Tim G. J. Rudner, Yann LeCun

ArXiv:2502.14819
https://latent-planning.github.io/
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Planning with Latent-Space Dynamics Model (PLDM)

23 datasets, 6 methods.
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Training the JEPA with VCReg
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Planning with Latent-Space Dynamics Model (PLDM)

Planning
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Planning a path in a maze (visible from an image)

PLDM

HIQL

In training Medium Out of distribution



VICReg-based SSL for PDEs

ArXiv:2307.05432    NeurIPS 2023
Self-Supervised Learning with Lie Symmetries for Partial Differential Equations
Grégoire Mialon, Quentin Garrido, Hannah Lawrence, Danyal Rehman, Yann LeCun, Bobak T. Kiani
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SSL for PDE: extracting dynamical parameters with VICReg
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Using VICReg to learn representations of the equation.
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SSL for PDE
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SSL for PDE: Data “augmentation”
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SSL for Predicting Buoyancy in Navier-Stokes
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SSL for Predicting Buoyancy in Navier-Stokes
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SSL pre-training gives better results than purely supervised
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Science is all about finding abstract representation spaces

Find an abstract state representation that allows to make predictions
Extract the state representation from observation/measurement
Predict outcome resulting from an intervention/experiment

transformation
experiment

state vector of 
relevant 
variables

Prediction of the
Representation of 
The resulting state

Representation of 
The resulting state

Initial
System
Observation

Resulting
System
Observation

Irrelevant and 
unpredictable 
information is 
eliminated from the 
representation
The representation 
contains 
information that 
makes prediction 
possible
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Multi-level hierarchy of models and representations

Lower levels make short-range 
(short-term) predictions.
Preserve details.

Are inaccurate or computationally 
difficult for long-range predictions

Higher levels make longer-range 
(longer-term) predictions.
Representations contain less details

Can make accurate long-term 
predictions, but with fewer details.



Y. LeCun

Multi-level hierarchy of models and representations

Lower levels make short-range 
(short-term) predictions.
Preserve details.

Are inaccurate or computationally 
difficult for long-range predictions

Higher levels make longer-range 
(longer-term) predictions.
Representations contain less details

Can make accurate long-term 
predictions, but with fewer details.

Quantum field

Particles

Atoms

Molecules

Materials

Objects

Proteins

Organelles

Cells

Organisms

Individuals

SocietiesMachines
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Ultimately, we want Hierarchical World Models

Hierarchical Planning: going from NYU to Paris

 Pred1Enc1(x)
s1At NYU

 Pred0Enc0(x)

Sitting in
my NYU
office  a1

 Pred1

 Pred0

 a0

Distance
To Paris

z0 z0

z1 z1

Guardrail1 Guardrail1

Guardrail2 Guardrail2

Distance
To airport

Go down
In the street

Grab a taxi
To airport

Taxi or train?
EWR or JFK?

Which
Airline?

Obstacles?
hail or call?
Traffic?
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Infomax-Regularized Sequence-Level JEPA

Scalable architecture

Causal Predictor
Trained as an auto-
encoder

Collapse Prevention 
with InfoMax
e.g. VCReg, 

MCR2, MMCR + 
others

Encoder with limited 
receptive field
Bounded on the right

s[t-3] s[t-2] s[t-1] s[t]s[t-6] s[t-5] s[t-4]

s[t-3] s[t-2] s[t-1] s[t]

Predict Predict PredictPredict Divergence

x[t-3] x[t-2] x[t-1] x[t]x[t-6] x[t-5] x[t-4]

Encode Encoder Encode Encode Encode InfoMax
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Training a Sequence-Level JEPA

s[t-3] s[t-2] s[t-1] s[t]s[t-7] s[t-6] s[t-5] s[t-4]

s[t-3] s[t-2] s[t-1] s[t]s[t-4] Divergence

x[t-3] x[t-2] x[t-1] x[t]x[t-7] x[t-6] x[t-5] x[t-4]

InfoMax                                       Encoder

                                  Causal Predictor
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Training an Action-Conditioned Sequence-Level JEPA

s[t-3] s[t-2] s[t-1] s[t]s[t-7] s[t-6] s[t-5] s[t-4]

s[t-3] s[t-2] s[t-1] s[t]s[t-4]
Divergence

x[t-3] x[t-2] x[t-1] x[t]x[t-7] x[t-6] x[t-5] x[t-4]

InfoMax

                                       Encoder

                                  Causal Predictor

a[t-3] a[t-2] a[t-1] a[t]a[t-7] a[t-6] a[t-5] a[t-4]

                                      Action Encoder

u[t-3] u[t-2] u[t-1] u[t]u[t-7] u[t-6] u[t-5] u[t-4]
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Hierarchical JEPA Architecture and Training

s[t-3] s[t-2] s[t-1] s[t]s[t-7] s[t-6] s[t-5] s[t-4]

s[t-2] s[t]s[t-4]

x[t-3] x[t-2] x[t-1] x[t]x[t-7] x[t-6] x[t-5] x[t-4]

                                       Encoder 1

                                  (Strided) Encoder 2

s[t-2] s[t]s[t-4] Divergence

                                  Causal Predictor

InfoMax

s[t-6]

2nd stage 
encoder
Strided or 
pooled 
archi so as 
to make 
longer-term 
predictions
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Recommendations:

Abandon generative models 
in favor joint-embedding architectures

Abandon probabilistic model
in favor of energy-based models

Abandon contrastive methods
in favor of regularized methods

Abandon Reinforcement Learning
In favor of model-predictive control

Use RL only when planning doesn’t yield the 
predicted outcome, to adjust the world model or the 
critic.

IF YOU ARE INTERESTED IN HUMAN-LEVEL AI, 
DON’T WORK ON LLMs
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Problems to Solve

Large-scale world-model training
From video, speech, text, code, dialogs, math….

Planning algorithms
Gradient-based methods, ADMM, gradient-free methods for discrete 
search

JEPA with latent variables
Learning and planning in non-deterministic environments
Latent variable regularization to prevent collapse

Planning in the presence of uncertainty
Mixed gradient-based / combinatorial optimization

Herarchical planning
Very large-scale differentiable associative memories
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Problems to Solve

Mathematical Foundations of Energy-Based Learning and inference
The geometry of energy surfaces, scaling laws, bounds…

How to maximize information content or minimize low-energy volume?

Learning Cost Modules (Inverse RL)
Energy-based approach: give low cost to observed trajectories

Planning with inaccurate world models
Preventing bad plans in uncertain parts of the space

Exploration to adjust the world models
Intrinsic objectives for curiosity, play

New objectives to drive SSL
Driving SSL to focus on interesting or useful features
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Future Universal Virtual Assistants

All of our interactions with the digital world
will be mediated by AI assistants. 
They will constitute a repository of all 

human knowledge and culture

They will constitute a shared infrastructure

Like the Internet today.

These AI platform MUST be open source
We need a diverse set of AI assistants for the same reasons we 
need a free press: linguistic, cultural, & value system diversity. 

Culture & knowledge cannot be controlled by a few companies 
on the West Coast of the US or in China.

Open source AI platforms are necessary



Thank 
you!
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